
1

Good Comments

EJUG – Good Code Lightning Talks
March 23, 2011

Warren Blanchet – wskb.ca
CC-BY-3.0



2

Why Comments?



3

Maintenance

• 10 Generations of programmers work on
your code before it is rewritten

• 50% - 60% of change time is spent on
understanding the existing code

• You have to communicate with these
people

Citations:
(Both via Steve McConnell. 2004. Code Complete, Second Edition. Microsoft
Press.)
Richard A. Thomas. 1984. “Using comments to aid program maintenance.”
BYTE, May, 415-22
G. Parikh, N. Zvegintzov. 1983. Tutorial on software maintenance. IEEE
Computer Society Press.



4

Inaccuracy vs. Distance

Distance

In
ac

cu
ra

cy



5

Distance

CoderMultipleCoderCoderConsumer

IDEWordIDEIDEAuthoring
Tool

CoderMultipleCoderCoderAuthor

Source File
ATest

Folder of
Word Files

Source File
A

Source File
AStorage

Unit TestReq’sCommentsLogic

What do I mean by distance?
Several concerns: Where is it stored? Who writes it? With what? For whom?
Some examples: Program Logic, Source Code Comments, Requirements, Unit
Test Logic



6

Distance

CoderMultipleCoderCoderConsumer

IDEWordIDEIDEAuthoring
Tool

CoderMultipleCoderCoderAuthor

Source File
ATest

Folder of
Word Files

Source File
A

Source File
AStorage

Unit TestReq’sCommentsLogic

Hey, look, these are pretty close.
Comments are good for documenting program logic



7

Distance

CoderMultipleCoderCoderConsumer

IDEWordIDEIDEAuthoring
Tool

CoderMultipleCoderCoderAuthor

Source File
ATest

Folder of
Word Files

Source File
A

Source File
AStorage

Unit TestReq’sCommentsLogic

This is good too, but that’s another presentation.



8

Distance

CoderMultipleCoderCoderConsumer

IDEWordIDEIDEAuthoring
Tool

CoderMultipleCoderCoderAuthor

Source File
ATest

Folder of
Word Files

Source File
A

Source File
AStorage

Unit TestReq’sCommentsLogic

This doesn’t match well
Comments are not great for requirements



9

Comment Taxonomy

• Marker
• Summary
• Explanation: intent + rationale
• API = Summary + reuse manual



10

Marker



11

License and copyright

• Audience is coder, sometimes
• Stick in header - ignorable when not

relevant



12

Version Control

I might need this later



13

Version Control

History is nice to have



14

Version Control

Good to know what changed



15

Version Control

• Did you know?
– There are tools for version control
– Many are free

• Advantages
– Up to date
– Accurate
– Better tool support
– Only visible when relevant



16

Task

Useful:
-Tool support: highlighting, lists



17

Task

Todo advantages:
-in tool lists
Exception advantages:
-Fails tests
-Can be used when returning value



18

Task

Combine approaches



19

Task

Bad: Requirements not program logic

But it’s not for requirements
How is this todo to get done?



20

Wish it were BASIC

See what distance does?



21

Wish it were BASIC

Indentation and matching braces already do the job



22

OK

Tools

Better

Annotations make it easier on tools and coders: it’s harder to get it wrong



23

Summary



24

Not concise - adds no value



25

Better



26

Best - in the code itself



27

Explanation



28

Simple code - no explanation necessary



29

Now strange: explain intent



30

Better: explain intent and rationale



31

API: JavaDoc



32

Summary + how to use



33

Also include:
-thread safety
-Thrown runtime exceptions (used for validation, etc.)



34

Miscellaneous

• Avoid net emptiness
• Avoid @author - version control’s job
• Use @link

Net emptiness: when the comment doesn’t say anything more than the method
signature:
-empty @param
-empty @return
-restatement of method name
-Example: getters/setters



35

Comment Presentation



36

Don’t do this: Presentation for presentation’s sake



37

One strategy: use presentation to distinguish between different types of
comments



38

Same strategy, different implementation



39

Tips for Eclipse users



40

Spelling



41

Spelling



42

JavaDoc view



43

JavaDoc validation



44

JavaDoc validation



45

I am always right,
except when I am not



46

Comments are communication

• Read books — I did:
– Code Complete, Second Edition

– Effective Java, Second Edition

• Hear from speakers
• Talk to colleagues
• Listen to customers



47

Good Comments

• “Good” is subjective and context-sensitive
• Expose yourself to ideas - no obligation
• Know the rationale behind your practices
• Be able to explain them



48

Good Comments

EJUG – Good Code Lightning Talks
March 23, 2011

Warren Blanchet – wskb.ca
CC-BY-3.0


