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Why Comments?
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Maintenance

• 10 Generations of programmers work on
your code before it is rewritten

• 50% - 60% of change time is spent on
understanding the existing code

• You have to communicate with these
people

Citations:
(Both via Steve McConnell. 2004. Code Complete, Second Edition. Microsoft
Press.)
Richard A. Thomas. 1984. “Using comments to aid program maintenance.”
BYTE, May, 415-22
G. Parikh, N. Zvegintzov. 1983. Tutorial on software maintenance. IEEE
Computer Society Press.
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Inaccuracy vs. Distance
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What do I mean by distance?
Several concerns: Where is it stored? Who writes it? With what? For whom?
Some examples: Program Logic, Source Code Comments, Requirements, Unit
Test Logic
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Hey, look, these are pretty close.
Comments are good for documenting program logic
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This is good too, but that’s another presentation.
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This doesn’t match well
Comments are not great for requirements
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Comment Taxonomy

• Marker
• Summary
• Explanation: intent + rationale
• API = Summary + reuse manual
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Marker
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License and copyright

• Audience is coder, sometimes
• Stick in header - ignorable when not

relevant
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Version Control

I might need this later
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Version Control

History is nice to have
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Version Control

Good to know what changed
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Version Control

• Did you know?
– There are tools for version control
– Many are free

• Advantages
– Up to date
– Accurate
– Better tool support
– Only visible when relevant
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Task

Useful:
-Tool support: highlighting, lists
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Task

Todo advantages:
-in tool lists
Exception advantages:
-Fails tests
-Can be used when returning value
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Task

Combine approaches
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Task

Bad: Requirements not program logic

But it’s not for requirements
How is this todo to get done?
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Wish it were BASIC

See what distance does?



21

Wish it were BASIC

Indentation and matching braces already do the job
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OK

Tools

Better

Annotations make it easier on tools and coders: it’s harder to get it wrong
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Summary
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Not concise - adds no value
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Better
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Best - in the code itself
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Explanation
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Simple code - no explanation necessary
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Now strange: explain intent
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Better: explain intent and rationale
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API: JavaDoc
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Summary + how to use
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Also include:
-thread safety
-Thrown runtime exceptions (used for validation, etc.)
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Miscellaneous

• Avoid net emptiness
• Avoid @author - version control’s job
• Use @link

Net emptiness: when the comment doesn’t say anything more than the method
signature:
-empty @param
-empty @return
-restatement of method name
-Example: getters/setters
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Comment Presentation
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Don’t do this: Presentation for presentation’s sake
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One strategy: use presentation to distinguish between different types of
comments
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Same strategy, different implementation
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Tips for Eclipse users
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Spelling
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Spelling
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JavaDoc view
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JavaDoc validation
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JavaDoc validation
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I am always right,
except when I am not
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Comments are communication

• Read books — I did:
– Code Complete, Second Edition

– Effective Java, Second Edition

• Hear from speakers
• Talk to colleagues
• Listen to customers



47

Good Comments

• “Good” is subjective and context-sensitive
• Expose yourself to ideas - no obligation
• Know the rationale behind your practices
• Be able to explain them
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